Diffusion-based model of local Al back surface field formation for industrial passivated emitter and rear cell solar cells
نویسندگان
چکیده
In this work, the back surface field (BSF) formation of locally alloyed Al paste contacts employed in recent industrial passivated emitter and rear cell solar cell designs is discussed. A predictive model for resulting local BSF thickness and doping profile is proposed that is based on the time dependent Si distribution in the molten Al paste during the firing step. Diffusion of Si in liquid Al away from the contact points is identified as the main differentiator to a full area Al BSF; therefore, a diffusion based solution to the involved differential equation is pursued. Data on the Si distribution in the Al and the resulting BSF structures are experimentally obtained by firing samples with different metal contact geometries, peak temperature times and pastes as well as by investigating them by means of scanning electron microscopy and energy dispersive X ray spectroscopy. The Si diffusivity in the Al paste is then calculated from these results. It is found that the diffusivity is strongly dependent on the paste composition. Furthermore, the local BSF doping profiles and thicknesses resulting from different contact geometries and paste parameters are calculated from the Si concentration at the contact sites, the diffusivity and solubility data. These profiles are then used in a finite element device simulator to evaluate their performance on solar cell level. With this approach, a beneficial paste composition for any given rear contact geometry can be determined. Two line widths are investigated, and the effects of the different paste properties are discussed in the light of the solar cell results obtained by simulation.
منابع مشابه
Co-diffused Apcvd Boron Rear Emitter with Selectively Etched-back Fsf for Industrial N-type Si Solar Cells
The employment of a B-doped atmospheric pressure chemical vapor deposited (inline belt APCVD) borosilicate glass is an elegant technology for industrially realizing a p emitter. By drive-in of B and a subsequent POCl3 co-diffusion, p emitter and n front surface field (FSF) are established in a single process step. APCVD-SiOx is used to prevent the p emitter from being compensated during P diffu...
متن کاملInfluence of the Front Surface Passivation Quality on Large Area n-Type Silicon Solar Cells with Al-Alloyed Rear Emitter
Efficiencies of large area n-type silicon solar cells with a screen printed rear side aluminum-alloyed emitter are mainly limited by their front surface recombination velocity. The front surface therefore has to be passivated by an effective passivation layer combined with a front surface field (FSF). In this work we investigate the influence of the front surface passivation quality and the bas...
متن کاملSurface recombination velocity of local Al-contacts of PERC solar cells determined from LBIC measurements and 2D simulation
Industrial production volumes of passivated emitter and rear contact (PERC) solar cells increase due to significantly higher cell efficiencies compared to full area back surface field (BSF) solar cells at similar costs. The main features of PERC cells are dielectric surface passivation of the rear and local contact formation with Al leading to a pp junction beneath the Al/eutectic. For non-opti...
متن کاملEvolutionary process development towards next generation crystalline silicon solar cells : a semiconductor process toolbox application
Bulk crystalline Silicon solar cells are covering more than 85% of the world’s roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90’s and provides a production learning curve on module price of constant 20% in a...
متن کاملA Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells
Advances in the efficiency of crystalline silicon (c-Si) photovoltaic (PV) devices above the long-held record efficiency value of 25% have all come from solar cell architectures with passivated contacts fabricated on n-type silicon.[1] The most successful devices to date have a silicon heterojunction (SHJ) cell structure, featuring a thin intrinsic amorphous silicon (a-Si) film that passivates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016